Dominating induced matchings of finite graphs and regularity of edge ideals

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dominating Induced Matchings of Finite Graphs and Regularity of Edge Ideals

The regularity of an edge ideal of a finite simple graph G is at least the induced matching number of G and is at most the minimum matching number of G. If G possesses a dominating induced matching, i.e., an induced matching which forms a maximal matching, then the induced matching number of G is equal to the minimum matching number of G. In the present paper, from viewpoints of both combinator...

متن کامل

Regularity of second power of edge ideals

Let G be a graph with edge ideal I(G). Benerjee and Nevo proved that for every graph G, the inequality reg(I(G)2)≤reg(I(G))+2 holds. We provide an alternative proof for this result.

متن کامل

Perfect Matchings in Edge-Transitive Graphs

We find recursive formulae for the number of perfect matchings in a graph G by splitting G into subgraphs H and Q. We use these formulas to count perfect matching of P hypercube Qn. We also apply our formulas to prove that the number of perfect matching in an edge-transitive graph is , where denotes the number of perfect matchings in G, is the graph constructed from by deleting edges with an en...

متن کامل

The Regularity of Binomial Edge Ideals of Graphs

We prove two recent conjectures on some upper bounds for the Castelnuovo-Mumford regularity of the binomial edge ideals of some different classes of graphs. We prove the conjecture of Matsuda and Murai for chordal graphs. We also prove the conjecture due to the authors for a class of chordal graphs. We determine the regularity of the binomial edge ideal of the join of graphs in terms of the reg...

متن کامل

Dominating Induced Matchings for P8-free Graphs in Polynomial Time

Let G = (V,E) be a finite undirected graph. An edge set E ⊆ E is a dominating induced matching (d.i.m.) in G if every edge in E is intersected by exactly one edge of E. The Dominating Induced Matching (DIM ) problem asks for the existence of a d.i.m. in G; this problem is also known as the Efficient Edge Domination problem. The DIM problem is related to parallel resource allocation problems, en...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebraic Combinatorics

سال: 2015

ISSN: 0925-9899,1572-9192

DOI: 10.1007/s10801-015-0632-z